
UNIVERSITY OF EDINBURGH

MASTER’S THESIS

Discrete SIR Game for Understanding
Epidemics

Author:
Mateo VARGAS

Supervisor:
Dr. Stephen GILMORE

A thesis submitted in fulfillment of the requirements
for the degree of Master’s of Science in Computer Science

in the

University of Edinburgh
School of Informatics

August 15, 2017

iii

Declaration of Authorship
I, Mateo VARGAS, declare that this thesis titled, “Discrete SIR Game for Understand-
ing Epidemics” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“...we believe that games are both a reflection of and a participator in human culture. Playing
is as old as people are, and games offer us ways to laugh, think, collaborate, escape...”

Austin Walker, "A Note on Trump, Waypoint, and Why We Play"

vii

University of Edinburgh

Abstract
College of Science and Engineering

School of Informatics

Master’s of Science in Computer Science

Discrete SIR Game for Understanding Epidemics

by Mateo VARGAS

The work contained within sought to develop a digital game that conveyed the core
principles of the SIR model for epidemics and improve the learning outcomes for
students when learning this model. Initial work resulted in a simple C# that sim-
ulated the SIR model. This was then extended to become the central behavior in a
short game. Both the simple script and the model in the game were evaluated to
ensure their accurate portrayal of the model. The prototype for this game was then
deployed to several participants in two short evaluation experiments. Though nei-
ther work demonstrated a conclusive trend, the work within provides some insight
into creating a game that conveys information about the SIR model of epidemics. . . .

ix

Acknowledgements
I would like to thank my father, mother, and sister for all their support from across
the ocean, as well as Dr. Gilmore for all his advice and support. I would also like to
extend my gratitude to my friend, Daniel, for allowing the use of his music.. . .

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Background 3
2.1 Games For Learning . 3

2.1.1 Learning Games in School . 4
2.1.2 Learning Games in Other Contexts 4

2.2 The SIR Model . 5
2.3 Unity Integrated Development Environment 7

2.3.1 Unity Editor . 7
2.3.2 Unity Engine . 8

3 Methodology 11
3.1 Simple SIR Model in C# . 11

3.1.1 SIR Model Constructor . 11
3.1.2 Infection and Recovery . 12

3.2 Planning and Design of the Game . 13
3.2.1 Game Design Document . 14

3.3 Scene One: The Main Menu . 15
3.3.1 menuScript . 17
3.3.2 soundController . 19

3.4 Scene Two: The Instruction Scene . 21
3.4.1 textboxManager . 22

3.5 Scene Three: Gameplay . 23
3.5.1 gameManager . 25
3.5.2 boardManager . 29
3.5.3 sirGameModel . 32
3.5.4 movementController and character 35

3.6 Scene Four: The Results . 40

4 Evaluation 43
4.1 Evaluating the Model . 43

4.1.1 Evaluating the Simple C# Script 43
4.1.2 Evaluating the In-Game Model 45
4.1.3 Comparison to Previous Implementations 46

4.2 User Evaluation and Assessments . 47
4.2.1 Experiment One Results . 48
4.2.2 Experiment Two Results . 49

xii

5 Conclusion 51

A Quizzes 53
A.1 Post-Quiz . 57

Bibliography 61

xiii

Dedicated to my father, Rodrigo.. . .

1

Chapter 1

Introduction

Games have been a feature of human civilization since some of the earliest societies
in recorded history. Citizens of the nation-state of Ur played board games as part of
their leisure time [1], and evidence has been found of early dice use on the Indian
subcontinent since around 2300 B.C.E. [11]. Now, with the explosion of digital tech-
nology in recent decades, games have expanded into the digital realm and prolifer-
ated greatly. Because of the relative youth of the medium, research into the effects
of playing digital games has really only just begun. Recent research has increasingly
examined the use of games (and digital games in particular) in improving learning
outcomes for developing pupils. Studies such as Rowe et al.’s [13] and Pesare et al.’s
[12] demonstrated that games-based learning through specially designed games in
conjunction with traditional instruction can have a positive effect on learning in a
student’s education. A large reason for this bloom in research is that games as a
medium seem to uniquely engage players through their interactivity in ways that
older forms of entertainment do not. Developers have increasingly been creating
commercial release games that attempt to impart some knowledge on the subject
they are simulation. Many of these games have seen success and have been praised
by experts. These games have been developed and convey some educational ben-
efits in a myriad of areas, such as Mini Metro and its simple simulation of urban
planning [43] or Kerbal Space Program and its simulation of space exploration and
rocket science [44].

The Susceptible-Infected-Recovered (SIR) model for disease is a widely-used math-
ematical model which describes the way a particular disease travels through a pop-
ulation. It is an important part of epidemiology and is taught to many students
in health-related fields. The mathematical equations dictate the way individuals
change from susceptible, infected, and recovered, with specific constants to repre-
sent contacts with infected individuals and the rate of recovery. This disease model
has been used to describe epidemics such as the "Hong Kong Flu" epidemic of 1968
and is commonly taught in epidemiology courses [41]. Learning the equations and
understanding how they work concretely, however, is a difficult proposition when
simply reading the numbers and variables used in the model. Additionally, many
of the individuals learning this model may not necessarily be as proficient in mathe-
matical modeling as they are in other fields. Thus, learning an abstract, math heavy
model such as this may be more difficult for these individuals. Using a game that
simulates the SIR model within a manipulable digital experience may then allow stu-
dents to cognitively anchor these abstract equations onto a concrete example, thus
improving their learning outcomes. By playing a game that they can interact with
and view changes based on their actions, the model may become more than just a
set of numbers and variables to them.

2 Chapter 1. Introduction

The objective of this project is to address the question: can a digital game im-
prove the learning outcomes of students that are learning the SIR model of epi-
demics? It would seem that the ways games engage people and deliver immediate
feedback make them a valuable tool in learning many things. Thus, a digital game
may prove to be an ideal way with which to give students a better understanding of
the SIR model for epidemics. Within the constraints of this project, this prototype of
a digital game provides a proof of concept that teaching the SIR model may benefit
from a companion digital game with which players interact.

The remainder of this work will detail the separate steps taken to complete this
project. Chapter Two will examine the mathematics underpinning the SIR model
and delve into current avenues of research in games-based learning. It will also pro-
vide some background on the environment in which the game was developed, the
Unity Integrated Development Environment. Chapter Three will detail the process
of development for this application, from planning to the programming. This will
include the a discussion of designing the game, as well as go into detail on the devel-
opment of the scripts necessary to complete the game. Chapter Four will examine
the results of an initial evaluation of the model and then examine the results obtained
via a cohort of testers. Chapter Five will provide a review of the work completed, as
well as any conclusions that can be drawn from this project.

3

Chapter 2

Background

The SIR model is a potentially useful tool epidemiologists and public health work-
ers use to understand the spread of epidemics within a population. These same
individuals, however, are required to handle epidemics in a more direct manner; the
abstract manner mathematical model does not lend itself to a concrete understand-
ing of the spread of disease in real-world scenarios. This challenge may be overcome
through the thoughtful use of games-based learning and serious games, which both
have been shown to have increased student’s knowledge acquisition and content
understanding in a variety of scenarios [2]. This section will comprise an overview
of the SIR model itself, followed by an overview of past and current research into
games-based learning and serious games, and end with a description of the Unity
Integrated Development Environment and the Unity Engine.

2.1 Games For Learning

Games have been an integral part of human culture for centuries, with some of the
earliest societies engaging in play as a way to spend their limited leisure time. Re-
cently, researchers have been focusing in on both the positive and negative outcomes
of playing games, in the physical realm and in the virtual realm. Garris et al. indicate
that the outcomes for playing games can be divided between skills based learning
outcomes, cognitive outcomes, and affective outcomes [4]. At a later point, Wouters
et al. proposed that games have four kinds of learning outcomes, which can be
broken down into cognitive skills, motor skills, affective learning, and communica-
tive learning [45]. In recent years, the proliferation of video game consoles, mobile
phones/tablets, and digital marketplaces has made digital games easier to acquire
for more people, thus increasing the time modern people engage with digital games.
With that in mind, recent research has been increasingly focused on harnessing dig-
ital games specifically as a way to increase engagement with certain materials and
topics.

Initially, the focus of investigations into the outcomes of playing digital games
was on the negative outcomes; however, this focus has shifted as more research has
been published. Early work into the positive benefits of playing games found that
there is a link between playing violent video games and improved visual spatial
abilities [2]. From this seed of research grew the tree that encompasses games-based
learning, or the creation of games with educational, rather than entertainment, pur-
poses in mind. Learning is most effective when students are actively engaged with
problem based methods that provide immediate feedback, as Boyle et al. describe
[6]. While intended for leisurely engagement, games provide the features Boyle de-
scribes as an integral part of their medium, emphasizing the potential benefits when
they are used in an educational context and providing a link between playing games

4 Chapter 2. Background

and learning. The National Research Council of the United States put forth that
games are promising because they motivate players with challenges and provide
rapid feedback, while having their instructions tailored to their learning needs [7].
This link has been observed in real-world scenarios, from grade school classes to
medical training, reported by Rowe et al. [13] and Pesare et al. [12].

2.1.1 Learning Games in School

To investigate this link between playing games and learning, Rowe et al. set out
to examine the ways narrative can assist in engaging students and increasing their
learning. They developed the game Crystal Island, a narrative-centered game with
the objective of aiding in students understanding of material they learn in a tradi-
tional academic environment. This game was intended to work in conjunction with
the traditionally-taught curriculum from the North Carolina School system’s eighth
grade biology course [13]. They developed the game with Valve Software’s Source
engine, a widely available platform with which to design digital games. The game
itself tells the tale of a visitor traveling to an island that is in the midst of a mysterious
epidemic. The player character is then tasked with the investigation of the disease,
with the ultimate objective of finding the cure and stopping the spread of the disease.
Each student’s overall performance in understanding the material is evaluated us-
ing a combination of factors, such as sixteen multiple choice questions, the number
of game objectives completed, and the final game score that was calculated for the
student [13]. Evaluating along these measures, Rowe et al. observe that an increased
level of engagement with the game correlated with improvement on the exit quiz.
They measured engagement through the use of a presence questionnaire, originally
created by [10]. This suggests that the students that were more active in playing
the game experience a larger learning gain, which they noted occurred regardless
of the prior knowledge level of the individual [13]. Additionally, these same trends
were observed across groups of individuals with little prior gaming experience and
groups with plenty of gaming experience [13]. It is important, however, to note that
players who did demonstrate a greater prior content knowledge showed a higher
engagement level, despite their findings that engagement measures were more as-
sociated with the post-test score. Rowe et al. point out that the key element to this
improvement was a carefully crafted story and gameplay elements that reflect the
lessons they seek to teach [13]. Crystal Island and the ensuing experiments demon-
strate that narrative games can indeed have educational benefits when designed and
played in conjunction with a traditional course curriculum.

2.1.2 Learning Games in Other Contexts

In a later study, Pesare et al. sought to develop games to assist in the training of med-
ical professionals and patients. They aimed to develop one game which focused on
training medical professionals of all levels and another with the goal of training pa-
tients how to manage their own illnesses [12]. Their objective was to improve the
training of these populations through the use of games in combination with tradi-
tional training methods.

The first game simulated clinical cases, and used real patient data to create dif-
ferent scenarios for the different tiers of medical professionals, from nurses to spe-
cialists [12]. The game presents a player with a particular case, pulled from the
database of anonymous patient information, and presents the player with several
options. The options the player is presented with depends on their particular role in

2.2. The SIR Model 5

the hospital; nurses get different options than physician’s assistants, who themselves
have different options than would a doctor. The game then rewards players for tak-
ing the correct course of action, according to the real patient data [12]. According
to the player’s performance, the game would then record the score and level for the
player and update the case study to a different scenario. The game itself recorded
a player’s score and level, ranks (used to measure a participant’s progress), and re-
wards (bonuses). The player performance was evaluated using a combination of the
final game score and the performance on a pre- and post-test.

In the second game, the goal was to train patients to better manage their dis-
eases. This game was designed to be played with the aid of a medical professional,
who acts as sort of a game manager. The patient plays as an avatar in a role-playing
game where progress is measured by the number of correct answers a player gives
to problems posed to the game avatar [12]. Answering a question correctly allows
the player to increase their score, while incorrect answers will cause the player to
lose a life, with the ubiquitous standard of three lives being given at the beginning
of the game. Each question was designed to have the player learn something about
managing their disease. Once a player loses all three of their lives by giving incor-
rect answers, the medical professional assigned to their case would intervene and
restart the game. The medical professional will then examine the learning gap and
assign other training material to aid in supporting the patient [12]. Each patient’s
performance was then evaluated using a combination of their game score and pre-
and post-tests.

While both of these games had small sample sizes in terms of their evaluations,
their results are promising. These games demonstrate that games-based learning
can be an interesting avenue to improve education and training in the medical field.
Furthermore, they demonstrate that using games in both academic contexts and
work training contexts can be beneficial for the participants. Games for learning
now address a myriad of different disciplines, such as business, computing, geogra-
phy, health, and science [2]. Because of these previous studies, it would seem that,
when teaching students the SIR model, they would benefit from the use of an in-
teractive game to simulate the abstract model. To develop such a game, the Unity
development environment would be beneficial for its ease of access and use.

2.2 The SIR Model

Mathematical models have been used to describe many of the natural phenomena
that humans have observed in the world, and the spread of disease is no different.
The SIR model, specifically, is a mathematical model that simulates the spread of an
infectious disease through a fixed population. The SIR model was developed in the
wake of the Spanish Influenza Epidemic of 1918-1919 that killed between 20 and 50
million individuals worldwide [42]. First proposed by Kermack and McKendrick of
the Royal School of Physicians, Edinburgh, in 1927, they observed that the termi-
nation of an infection is subject to the population density, infection, recovery, and
death rates [9]. This led them to propose the SIR model as a way of explaining the
rapid rise and then decline of infected patients seen in epidemics throughout his-
tory [9]. The model gained widespread use and has been used to model epidemics
throughout the Twentieth century, such as the "Hong Kong Flu" epidemic of 1968. It
utilizes a system of equations to describe the transition of individuals between the
susceptible population (individuals who have yet to achieve immunity), the infected
population (individuals who are carrying the disease), and the recovered population

6 Chapter 2. Background

(individuals who have either achieved immunization naturally or otherwise, as well
as the dead). For this particular model, the independent variable is time, primarily
measured in days. The dependent variable is the number of people in each popu-
lation. The equations for each population are seen here as a function of t (time in
days), with N representing the total population [41]:

S(t) = S

I(t) = I

R(t) = R

S(t) + I(t) +R(t) = N

These same equations can then be converted to model the fractions of the total pop-
ulation that each contain, with N symbolizing the entire population count. Each of
these equations must then be able to be summed up to equal one at each time point
[41]:

s(t) =
S(t)

N

i(t) =
I(t)

N

r(t) =
R(t)

N

s(t) + i(t) + r(t) = 1

The first order derivatives of each of these equations, then, represent the rates of
change for each subpopulation. These rates are determined by two different con-
stants, which vary depending on the disease. The first constant represents the fixed
number of contacts that occur each day, symbolized by b. The second constant, sym-
bolized by k, is the fraction of individuals that recover during a given day [41]. With
this in mind, the rate of change for each subpopulation is then modeled with the
following formulas, with the first set representing the rates of change when work-
ing with the first system of equations presented and the second representing when
working with the second system of equations:

dS

dt
= −bS(t)I(t)

dR

dt
= kI(t)

dI

dt
= bS(t)I(t)− kI(t)

ds

dt
= −bs(t)i(t)

dr

dt
= ki(t)

di

dt
= bs(t)i(t)− ki(t)

From these equations, it is evident that, at each time point t, the susceptible popu-
lation is reduced as individuals are infected with the disease. For the recovered in-
dividuals, the subpopulation grows as a fraction of the infected population recovers

2.3. Unity Integrated Development Environment 7

each day. The infected population, then, increases with the amount of individuals
that change from susceptible to infected and decreases with the amount of infected
individuals that recover each day. To those with a background in mathematics, un-
derstanding this may be trivial; however, not all health officials who would benefit
from a deep understanding of this model have such a background. Utilizing games
in conjunction with traditional teaching methods, then, allows the students to cogni-
tively anchor these abstract concepts through the interaction with a virtual scenario.

2.3 Unity Integrated Development Environment

The Unity Integrated Development Environment (Unity IDE) has gained traction
within the games industry recently because of its availability and the powerful tools
which it provides to developers. Specifically amongst small, third-party developers,
the Unity IDE has become the most popular tool, with over 34% of the top 1000 mo-
bile games having been developed using Unity [21]. Unity is even being increasingly
used by larger game development studios such as Ubisoft, amongst others. There
are games of all stripes being created in this engine, with releases such as Lara Croft:
Go, Pokémon: Go, Cities: Skylines, and Firewatch. Because of its free availability, as
well as the amount of platforms Unity supports (everything from mobile devices to
home video game consoles), it affords a unique set of powers with which to create
video games [21]. The most important aspect of this is that Unity comes ready with
a library that dictates the behavior of the Unity Engine. This Unity Engine provides
many of the object behaviors that are required to function in the game, such as the
definition of game objects, physics components, and so on. These can all be seen
on the Unity Documentation page [40]. In addition, Unity provides a Unity Asset
Store, which allows developers to scour the storefront for any necessary asssets, such
as sound, sprites, scripts, library extensions and so on. For this project, only art as-
sets and a single library extension was obtained using the asset store (these will be
discussed in further detail in Chapter Three). The Editor allows for the manipulation
of the game objects, whose code is dictated through the Unity Engine’s library.

2.3.1 Unity Editor

The Unity Editor is where most of the design work takes place. Within this frame
is contained all of the options to visually inspect the developing game, as well as
any view of the different game objects that make up a single scene and the files that
are imported for the current project. The toolbar at the top provides the developers
ways to adjust objects in the scene, either by moving the object or changing the
object’s scale. It also provides ways for the developer to run the game and pause
whenever necessary.

The Project Window allows for a structured view of all the files that are imported
into the current project. This also constitutes the main file structure of the overall
application. From here, a developer can view any files that are imported and add
them onto game objects as needed, through a series of menus or by dragging and
dropping. These assets can be imported from local files or obtained via the Unity
Asset store, a digital marketplace for prefabricated assets. From here, one can create
scripts which are then opened in MonoDevelop with all the requisite libraries and
classes to function within the Unity environment.

The Hierarchy Window is where all of the current game objects that are required
for the current scene can be viewed. These game objects can be anything from

8 Chapter 2. Background

FIGURE 2.1: "Unity Editor Window [27]"

art, programming scripts, cameras, UI canvases, and so on. Objects that are be-
ing worked on can be selected in this window for closer inspection. This will also
display which objects are not destroyed by the Unity engine between loaded scenes.

The Inspector Window allows the developer to more closely inspect individual
game objects. Because each game object can have components attached to them,
this window allows a developer to view and adjust the attached components. These
components can include physics components to detect collision, rendering compo-
nents to render artwork, scripts to determine behavior, text boxes, buttons, and so
on. Scripts in particular have a unique feature; when a particular variable is public
in the corresponding script, the developer can simply drag and drop the required
object into the designated slot in the Inspector Window. Thus, variables can be as-
signed within the Unity Editor and not explicitly done via scripting (although that is
also a viable option). Where necessary, this work will explain components required
for this particular endeavor.

2.3.2 Unity Engine

The Unity Engine provides many libraries of methods and classes available for de-
velopers to dive straight into creating scripts for their games. These libraries dictate
the behavior of many game functions, such as UnityEngine.SceneManagement,
which provides methods to load and quit scenes that are in the build [40]. It also
provides classes that describe different components that may be needed for game
objects, such as the SpriteRenderer class, which describes an object that allows
the engine to render sprites [35]. Engineering the libraries and classes to demon-
strate the behavior required for a particular project is then up to the programmer.

For this particular project, the libraries required from the Unity Engine were the
UnityEngine.SceneManagement and the UnityEngine.UI. The SceneManagement
library was used in this particular project to load between the four scenes created for
the prototype, as well as quit the application when desired. The classes utilized for
scripting were:

• Sprite (Sprite object for use in 2D gameplay [34]),

2.3. Unity Integrated Development Environment 9

• SpriteRenderer (renders a Sprite for 2D graphics [35]),

• Rigidbody2D (Rigidbody physics component for 2D sprites [32]),

• Box Collider2D (Collider for 2D physics representing an axis-aligned rectangle
[17]),

• Canvas (element that can be used for screen rendering [20]),

• Button (a button that can be clicked on to trigger events [18]),

• Text (the default graphic to draw font data to screen [36]),

• and AudioClip (a container for audio data [15])

The documentation for all of these libraries and classes can be found at [40]. These
classes will be discussed more in detail where appropriate when discussing the
methodology.

11

Chapter 3

Methodology

To create this game, there were two phases of work done, broken up by evaluation
phases. The first phase involved writing a script that simulated the spread of an in-
fection through a population solely via programmatic conventions and instructions.
This model would accurately portray the SIR model. The second phase involved cre-
ating the four scenes necessary for the overall prototype. This included editing and
extending the original script from phase one to utilize the Unity engine’s extensive
library of classes and methods. Every script was written in C# for this particular
project. What follows is a detailed explanation of the necessary scripting compo-
nents for each phase of work, as well as an explanation of the unique techniques in
Unity that were used.

3.1 Simple SIR Model in C#

The initial phase done was a preliminary foray into designing and implementing
a model that accurately simulates the SIR model entirely programmatically. This
created a solid foundation to use for later scripting work when implementing the
same behavior in a game environment. With an accurate model with which to use as
a base, there was less time spent planning and implementing how to approach this
model within a game environment. To do this, time was spent in deciding which
data structure would be best to use as the backbone to the model, as well as the
variables which the model would track. The constructor is seen in Figure 3.1. Please
refer to the figure(s) as needed.

3.1.1 SIR Model Constructor

The constructor, sirModel, takes in four values that dictate the behavior of the overall
model: the initial numbers of susceptible and infected individuals (int susceptible
and int infected respectively), the contact rate (double b) and the recovery rate
(double k). It utilizes a Dictionary, called population, that keeps track of every indi-
vidual in the population and their status. The individual’s key is a unique number,
while the value for each key is a string that indicates their status: "susceptible," "in-
fected," or "recovered." A Dictionary was chosen as the most-apt data structure be-
cause of its O(1) retrieval time [3]. Knowing that the model would most likely need
a quick way to look up a given individual and change their status, the O(1) look-up
time would be crucial in implementing an efficient model. The individuals are then
added to the Dictionary, one by one, the "susceptible" individuals being added at
the front and the "infected" individuals being added immediately after. This would
always add up to the total population, as the "recovered" population is initially set to
zero. It also ensures that the contact rate and the recovery rate are set to the passed
in parameters of b and k, so the model is aware of these values. A series of getter

12 Chapter 3. Methodology

and setter methods were then written to be able to get and set the susceptible count,
the infected count, the recovered count, the contact rate, and the recovery rate.

3.1.2 Infection and Recovery

The method that is instrumental in eliciting behavior that simulates the SIR model
is the infect_and_recover() method. This method is the primary way the epi-
demic behavior is translated into programmatic code in this script. Originally, the
plan was to implement the infection and recovery behavior as separate methods;
however, when considering the mathematical equations (see Chapter2), the rate of
infection and the rate of recovery must be calculated at once for the same time point.
This is because the equations both have dependencies on the count of infected in-
dividuals. When shifting the focus to the in-game model, however, this method of
calculation changes.

This method begins by calculating the rate of infection and the rate of recovery
for the current time point. In this particular case, these equations are calculated as
rates in terms of the whole population; this is opposed to viewing the total popula-
tion as one and using fractions of one. The SIR model’s equations have been detailed
for both scenarios and can be seen in Chapter 2. This simplified the programmatic
instructions that were needed to complete the rest of the method. The two vari-
ables, rate_of_infection and rate_of_recovery, determine the amount of
individuals that change status at the given time point. The loops are then what ac-
tually ensure that the changes in status are made.

3.2. Planning and Design of the Game 13

The first loop is where the infection spread occurs. There is a variable i which is
set to zero. This variable i keeps track of the amount of infectious contacts that
have occurred up to this point. While it is greater than the rate_of_infection
variable, there are still infectious contacts to occur for this time point. It then loops
over from zero to the total population count. At each iteration, it checks the sta-
tus of the current individual. If the individual is "susceptible" and i is still greater
than the rate_of_infection, then the current individual will change from "sus-
ceptible" to "infected," incrementing the infected_count and decrementing the
susceptible_count variables. It also then will decrement i by one (because there
an infectious contact). Once this loop is completed, the infectious contacts for the
current time point are completed.

The second loop is where the recovery occurs. Because the Dictionary is set up
so that the infected individuals are added after the susceptible individuals, this loop
goes through the dictionary in reverse order. It keeps track of a variable, k, which
keeps track of the amount of individuals that have recovered for this time point.
Every iteration then checks if the current individual is "infected" and if k is still less
than the rate of recovery. If both of these hold true, the current individual will be
set to "recovered." The infected_count will then decrement and recovered_count
and k will increment.

Following this pattern, the script demonstrated the requisite desired behavior
for an infection that follows the SIR model. The results from evaluating this will be
examined in Chapter Four. The creation of this script allowed for a better under-
standing in how best to approach implementing this model inside the game itself,
which was the ultimate goal of this exploratory phase. While the infection and re-
covery portions of the model change from this script to the in-game model, the data
structures and values for the in-game model remain quite similar. This will be cov-
ered in Section 3.5.

3.2 Planning and Design of the Game

With a simple SIR model implemented, the next step shifted focus to the planning
and designing of the game. To do this, a game design document and a state diagram

14 Chapter 3. Methodology

of the different game states were created. A game design document is a document
that aims to express some vision for the game and describes possible content [14].
This, in combination with a state diagram outlining the expected sequence of events
for a level, created a clearer path to follow while completing this project. Due to
the smaller size of this project compared to the larger-scale projects that occur in the
industry, many parts of the traditional game design documents were taken out.

3.2.1 Game Design Document

This document records the initial plan for the game. The plan was to create a re-
source manager, where you have to manage some resource (in this case "power") to

3.3. Scene One: The Main Menu 15

be able to create vaccines to stem some of the infection. Please refer to both Figures
3.3 and 3.4 as necessary. There originally was going to be a second resource to man-
age, but that was not completed in favor of simplifying the mechanics. Instead, it
was left that the alternative to vaccinating individuals was to quarantine individu-
als for no cost. The document demonstrates the idea that the game would progress,
with some form of in-game time representing a "day," and ask the player whether
they would like to create vaccine, at the cost of some power. This would occur mul-
tiple times through the game, although the player becomes unable to create more
vaccines once power becomes zero. The level would continue until the end of the
infection. Then, the game would display a graph that represents the three subpop-
ulations, with the aim of helping the players cognitively anchor the level they just
experienced onto a more traditional graphical representation of this model. A state
diagram was also created to layout how the game progresses from event to event.
While the state diagram originally thought of each box as its own scene, many of
the boxes involved in the game-play phases simply became events during the main
game scene.

3.3 Scene One: The Main Menu

The first scene in the game is the main menu. From here, the player is able to initiate
the game, quit the game, and/or view the credits. To create the menu, art assets,
specifically the background image, were acquired through the Unity Asset Store.
The music required was obtained via consent through a musician based in Los An-
geles, Kyng Cold. The sound effects were acquired through the Unity Asset Store.
This scene consists of six main game objects: the Main Camera, EventSystem,
StartMenu, QuitMenu, soundManager, and Credits.

16 Chapter 3. Methodology

The Main Camera is an object of class Camera that is responsible for rendering
everything that the player will see on screen [19]. This object will repeat in every
scene. Because it is an object within Unity’s scripting API, the Main Camera is
not adjusted in any way and thus does not appear in any script. Thus, the Main
Camera remains in place and does not move; the only task it has is to render the
single screen with which the players interact. Because of this, there is no script at-
tached to the object. The only adjustments to the default settings were to set the
camera’s Z-axis position to -10 via the Inspector Window in Unity. When the camera
had the Z-axis position of zero, the necessary game objects were not visible. This is
because the camera, when at Z-axis position zero, will look behind the game objects
and never render the objects. To counteract this, lowering the depth to -10 ensured
that the camera could actually see the game objects that need rendering.

The EventSystem is a game object that is used by default in every Unity scene,
much like the Main Camera. This class dictates the sending of events to objects
based on some form of input, such as the keyboard, mouse, touch, or other custom
input [23]. For this project, keyboard and mouse are the only forms of input used.
This game object, then, is responsible for monitoring for any mouse presses on the
Main Menu screen and sending that notification to the scripts that utilize this input
on the Main Menu.

The StartMenu, QuitMenu, and Credits are all game objects of class Canvas.
The Canvas class is a class used for rendering the screen [20]. Each of these Canvases
have game objects attached to them that are the actual buttons, text, and scripting
needed to create the UI behavior necessary for the menu. Each Canvas represents
the three different UI menus available to the player through the main menu. These
menus are the Start Menu, where the player can start or quit, the Quit Menu, where
the player can close the game, and the Credits, where the player can find the proper
attributions.

The StartMenu has a Unity Image class object attached to it that is used as the
background, and has the background Sprite set as the source image. This Canvas

3.3. Scene One: The Main Menu 17

has a few other Unity game objects as sub-objects. These are a Unity Image object,
Image, which displays the background, a Unity Text object, Title, which displays
the title of the game, and three Unity Button objects, StartButton, QuitButton,
and CreditsButton. Each of these buttons are interactive and take you to either
the main game, the quit menu, or the credits. Additionally, the StartMenu Canvas
has an attached script, named menuScript. This script will be discussed in further
detail shortly.

The QuitMenu and the Credits have a similar structure to the StartMenu.
They both are Canvas class objects that also have an Image object, a Text object, and
two Button objects. However, these Canvases do not have a menuScript attached;
each Canvas is controlled via the script attached to the StartMenu canvas.

The soundManager is simply an object with a single attached component, which
is the soundController script. This game object is explicitly responsible for the
sound production throughout the game and it remains active in every scene. The
scripts, menuScript and soundController, are the vital part of the functionality
of this scene.

3.3.1 menuScript

The menuScript class dictates the interactive behavior and options that the player
has while on the main menu. It is attached as a component to the StartMenu, be-
cause it primarily dictates the behavior of this menu, which is the parent of the other
two menus. QuitMenu and Credits are simply sub-menus of the StartMenu.
Because of this, the menuScript class contains two public1 variables, quitMenu
and creditsMenu, that represent the two canvases used for the sub-menus. The
menuScript also defines the three buttons, startText, exitText, and creditsText

1Besides defining access to variables as seen in other frameworks, the public keyword in Unity pro-
vides an additional functionality. A variable set to public in a script is then accessible to manipulation
in the Unity Editor via the Inspector window. From there, a developer can set what they would like
this specific variable to be, without explicitly stating it programmatically in the script. Assigning game
objects in this way results in these becoming attached to components of the game object to which the
script is attached.

18 Chapter 3. Methodology

that are the buttons players can manipulate. Please refer to Figures 3.5 and 3.6 as
needed.

The Start() method is called upon loading a scene in which its parent class
exists automatically through the Unity game engine 2. The first task is to ensure that
the class variables are all pointing to the correct items. This involves using the Unity
provided method GameObject.GetComponent<T type>(). This method specif-
ically returns the component of type type, if one is attached to the current game ob-
ject [25]. For this specific script, the Canvas and Button components are attached to
the StartMenu Canvas through the Inspector window, and dragged into the avail-
able slots. Thus, the StartMenu ensures that quitMenu points to the QuitMenu
Canvas, creditsMenu points to the Credits Canvas, startText points to the
StartButton, exitText points to the QuitButton, and creditsText points to
the CreditsButton. The next few lines ensure that the sub-menus are hidden at
the beginning. This is done by setting the enabled3 variable to false.

The next five methods determine what occurs when buttons are pressed on the
main menu. ExitPress(), CreditsPress(), NoPress(), StartLevel(), and
ExitGame(), are all assigned to the correct Buttons via the Unity Editor. For Button
components, the Inspector window contains a section entitled OnClick(). This
interface allows the developer to select which game object contains the script that
dictates its behavior (in this case StartMenu) and then select the method to call
when the EventSystem detects a press on the Button.

ExitPress() dictates the behavior of the application when the player presses
the QuitButton. When a player presses the QuitButton, the EventSystem will
call the method. This method will then set quitMenu.enabled to true, making
the QuitMenu Canvas visible to the player and laying it over the main menu. Ad-
ditionally, it will hide the three buttons that make up the main menu, startText,
exitText, and creditsText. This is done by using the gameObject.SetActive(bool
boolean)4 method and setting it to false for all three. CreditsPress() deter-
mines the behavior of the application when the player presses the CreditsButton.
It follows an almost identical pattern as ExitPress(). It sets creditsMenu.enabled
to true so the menu is then overlaid onto the StartMenu Canvas. It then proceeds
to deactivate the startText, exitText, and creditsText Buttons by using the
same gameObject.SetActive(bool boolean) method.

2Along with Update() and FixedUpdate(), Start() is automatically created when creating a
script through the Unity Editor. This is because all scripts that work within the Unity Engine inherit
from MonoBehavior, which dictates many of the Unity specific behaviors and provides these methods
to inherit.

3The enabled variable is an inherited variable from the class MonoBehavior. Its purpose is to
determine whether an object will be updated or not. When set to true, the component will be visible
and updated by calling its Update() method. When set to false, the component is inactive.

4gameObject.SetActive(bool boolean) is a method of the gameObject class (which all the
components derive from as well) and determines whether the given component is active at the current
moment [26].

3.3. Scene One: The Main Menu 19

The NoPress() method is called when pressing the No Button on the QuitMenu.
This will only be available to be called after the ExitPress() or the CreditsPress()
method is called (because otherwise the particular Button that calls this method
is hidden). The purpose of this method is to return to the StartMenu from the
QuitMenu or the CreditsMenu. It does this by setting both quitMenu.enabled
to false and creditsMenu.enabled to false, thus hiding these menus. Addition-
ally, it uses gameObject.SetActive(bool boolean) to ensure that the neces-
sary buttons from the StartMenu Canvas are activated.

The StartLevel() method is called when pressing the startText Button on
the StartMenu Canvas. This method has a single line of instruction, with its only
goal to load the next Scene in the game. To do this, the UnityEngine.SceneManagement
5 library is used to enable access to the SceneManager.LoadScene(int buildIndex)
method, which loads the Scene with the passed in index in the game’s build.

ExitGame() is called when pressing the Yes Button on the QuitMenu. This
method is explicitly tasked with closing the application from this Button. To do so, it
calls the method Application.Quit(), which quits the application entirely. This
method is available via the Application class that exists in the UnityEngine library.

3.3.2 soundController

The soundController class is attached to the soundManager game object and
determines the sounds to play throughout the game. It contains five local variables,
an AudioSource6 efxSource, which determines the source for sound effects, an
AudioSource musicSource, which determines the source for music, an instance of
itself, instance, and two floats to determine a range of pitches. The instance
variable exists because this class follows a singleton design pattern and ensures that
there is only one soundController class in existence. This same design pattern
will be seen in another script, the gameManager. The musicSource variable is set
via the Inspector window, which also provides an interface to determine whether

5UnityEngine.SceneManagement allows the management of Scenes at run-time during a game
[33].

6AudioSource is a class that represents the source of the audio and can be represented in 2D or 3D.
It contains a variable, clip, that determines the audio data to play [16].

20 Chapter 3. Methodology

the music plays immediately. In this case, the music starts when the game starts and
continues throughout.

The method Awake() overrides the Awake()method inherited via MonoBehavior
and ensures the singleton pattern remains7. Here, it checks to see if instance
is currently set to NULL (which it will be when the game is first launched). If so,
it sets instance to the current soundController object. If it is not NULL, it
destroys the current soundController, because that would mean there is more
than one instance of this class. The last method called when loading the script is

7The Awake() method is called when a script is initially being loaded by the Unity engine and is
used instead of a traditional constructor in C# scripts written for Unity [28].

3.4. Scene Two: The Instruction Scene 21

DontDestroyOnLoad(gameObject object)8. This ensures that the instance of
soundController that is created remains active between scenes. This script will
then be the only control of sound throughout the entire game.

The methods PlaySingle(AudioClip9 clip) and RandomizeSfx(params
AudioClip[] clips) are the methods that play the sound effects when neces-
sary. These are called during game-play and are triggered by specific events in the
game. PlaySingle(AudioClip clip) plays a single sound effect clip at its de-
fault pitch. It sets the variable efxSource.clip to the audio data to be played
and then plays it. This is done by using the AudioSource.Play() method. The
RandomizeSfx(params AudioClip[] clips) does much the same work, ex-
cept that in the case it selects a random AudioClip to obtain data from, adjusts its
pitch randomly, and then plays the given clip.

3.4 Scene Two: The Instruction Scene

The second scene is an introduction and instruction sequence. Here, the player reads
a set of texts to understand the objectives of the game. It is here that the mechanics
of the game are explained to the player, as well as a motivation as to why the player
is playing. This scene consists of a text box that displays the instructions, as well as
a sprite for aesthetics.

This particular scene consists of a Main Camera and an EventSystem, much like
the previous scene, as well as a Canvas. The Canvas game object in this scene
has an Image component attached which displays the background. In this scene,
Canvas has three components as subcomponents: a Panel10, and two Sprites. The

8The method DontDestroyOnLoad(gameObject object) is inherited from the Object class to
the gameObject class. It ensures that the passed in target is not destroyed automatically when loading
a new scene [29].

9A container for Audio data that provides methods to change and play said data [15].
10A Panel component in Unity is a specific UI component that is a combination of other UI classes.

22 Chapter 3. Methodology

two Sprites are shown for aesthetics and are activated depending on the text dis-
played.

The Panel is where most of the functionality for this scene occurs. The UI Panel
has four sub-game objects: a Text component GameText, a script component textboxManager,
and two Button components, ContinueText and RepeatText. These work in con-
cert to allow the player to click the mouse to continue through the instructions that
are displayed in the Panel. Once the player reaches a certain point in the dialogue,
the Sprite changes. Upon reaching the end of the dialogue, the player then has the
ability to continue to the game or repeat the instructions. All of this behavior is
controlled through the textboxManager script.

3.4.1 textboxManager

The script textboxManager determines the dialogue being displayed in the Panel,
as well as the Sprite to be displayed above it. Thus, this class contains multiple dif-
ferent public local variables. The variable text is the text to display, text_file is
the file from which the text to display is obtained, continue_text and repeat_text,
the two Buttons, and text_lines, an array of strings that represent a single line
from text_file. It also contains a set of ints to keep track of where to trigger
changes in the scene: current_line, which keeps track of the current line being
displayed, hide_ship, the line to change sprites, and end_at_line, which deter-
mines when the file is completed. Additionally, it contains two SpriteRenderer
objects, sprite_renderer_one and sprite_renderer_two, which render the

3.5. Scene Three: Gameplay 23

Sprites when active. sprite_renderer_one renders the ship Sprite and sprite_renderer_two
renders the doctor Sprite.

Upon loading the Scene, the Start() method is called to set up the necessary
parts of the dialogue box. The first two instructions ensure that the continue_text
and repeat_text Buttons are set to inactive, as they are not needed until the end
of the Scene. It then sets sprite_renderer_one.enabled to true so the ship is
displayed, and sets sprite_renderer_two.enabled to false so the doctor is not
displayed. It then checks to ensure that the text_file needed is not empty and
then loads the file into text_lines, splitting at every newline character. The last
task will be to ensure that end_at_line ends at the last line of dialogue available.

The Update() method is called every frame by the Unity Engine as the game
is progressing. In this case, this is the engine responsible for monitoring and then
displaying the correct items. It starts by setting text to the current line of text. It
then checks if there is a mouse click; if so, the current line progresses to the next line.
It checks then if current_line is equal to hide_ship and, if so, hides the ship
Sprite by setting enabled to false and displays the doctor Sprite by setting enabled
to true. It finally then checks if current_line is equal to end_at_line and, if so,
displays the continue_text Button and repeat_text Button.

While the continuePress() method works similarly to the StartLevel()
method seen in menuScript, the repeatPress() is different. As seen before, the
Buttons are configured to trigger these methods when pressed. The repeatPress()
method specifically ascertains that the correct Scene is being displayed and then de-
activates the Buttons and reverts current_line to the value where the instructions
begin. These methods all work together to create the dialogue that leads a player into
the game-play phase.

3.5 Scene Three: Gameplay

The third scene comprises all of the actual game-play. This scene is also the most
complex in the amount of inter-working parts that demonstrate the behavior seen
on screen. After continuing past the instructions detailed in Scene Two, the game

24 Chapter 3. Methodology

board is then laid out and displayed, and allows the player to start working on lim-
iting the infection in whatever way they see fit. Each A.I. controlled individual is
colored according to their status in terms of the model; the blue is "susceptible," red
is "infected," and green is "recovered." It allows for the player to use the numeric
keys 1-4 to close the doors (with each key representing a door, left to right and top to
bottom). Additionally, players can pause the game at any time using the space key.
This allows the player to focus in and distribute the vaccines available by clicking
on individuals. The pausing was implemented because it seemed to be a too diffi-
cult to click on an individual while moving, thus rendering the difficulty more in the
click action rather than in the overall scenario. Every five seconds, a pop-up menu
will appear, prompting the player to choose whether to create a new vaccine or not,
at the expense of some power. This pattern of game-play continues as a loop until
there are no more "infected" individuals left in the game-play scene. This is because,
once there are no more "infected" individuals, the infection spread is stopped and
the infection lifespan is completed. The player also consistently has feedback as the
progress of the infection through the UI text. With each update of the frame, the
game displays the new amount of "susceptible," "infected," and "recovered" individ-
uals at the top of the game board. The number of vaccines and the amount of days
into the infection are displayed on the bottom.

This scene consists of the Main Camera, the EventSystem, a script called gameManager,
and a Canvas for UI. The gameManager script is key to this entire scene working.
While the game object is itself the script gameManager, it has two more scripts at-
tached to it as components of the gameManager script: the boardManager, and the
sirGameModel. These are used along with gameManager to set the layout of the
board, set the individuals, and set up the model, saving which individuals are being
set to "susceptible" and which are being set to "infected." Each Sprite is generated by
boardManager and it then becomes a game object in and of itself in the Hierarchy

3.5. Scene Three: Gameplay 25

panel on the Unity Editor. This is important, because the door tiles and the indi-
vidual tiles each have their own scripts attached to dictate their behavior; these are
doorController and character respectively. The sirGameModel script is an
edited version of the sirModel script seen in Chapter 3, Section 3.1. This script is
the controller of the model and sends updates to the other scripts so that they reflect
the changes needed to keep the game running smoothly. It then becomes a quasi-
form of the model-view-controller, with the sirGameModel script serving as the
model and updating the view through the character script and the gameManager.
This was chosen primarily to protect the SIR model from the rest of the scripts. The
sirGameModel script is the only script that keeps track of the infection status of
individuals and the counts of each the subpopulations. It is also the only script that
can change the status of an individual. Every other script communicates with this
model to affect the changes required due to their behavior.

The Canvas, in this case, consists of all the objects that make up the UI. This
includes the Text objects that display the amount of individuals in each population,
the number of vaccines, power, score, and days. These are updated regularly as the
game progresses. All of the text on screen as UI is individually its own UI Text object
that is a sub-object of the Canvas. There are additionally two Canvases that are sub-
objects to the Canvas: PauseMenu and VaccineMenu. PauseMenu only appears
when the escape key is pressed and provides options for a player in a traditional
pause menu format. The VaccineMenu appears every so often and prompts the
player to choose to make a new vaccine or not. These are controlled by the scripts
pauseController and vaccineMenuController respectively.

3.5.1 gameManager

The gameManager script is set up similarly to the soundController script seen
in Chapter 3, Section 3.3.2, although it contains many more local variables than
soundController. This class contains an instance of boardManager and sirGameModel,
as well as an instance of itself. It also contains lists to store the number of days, sus-
ceptible individuals, infected individuals, and recovered individuals accrued through
the model’s progression. Additionally, it contains three ints to keep track of score,
the total population, the maximum number of infected, and the current power. It
has a float that keeps track of the time passed in game (used for the vaccine choices)
as well as whether the pause menu is active or not. Finally, it contains multiple Text
objects that display the UI necessary, as well as two Image objects to display the
pause menu and vaccine menu.

Much like with the soundController script, this class follows the singleton de-
sign pattern when being initialized. It checks to see if instance is set to null and,
if so, sets it to the current instance. Otherwise, it destroys the object using Destroy
(gameObject object). Once it ensures that instance is pointing to this, it then
calls DontDestroyOnLoad(gameObject object) to retain it between Scenes.
This Awake() method differs from the one in soundController in that, after en-
suring the singleton pattern, there is still more work for the gameManager to accom-
plish. It points board_script to the boardManager component and sir_model
to the sirGameModel component. It then initializes all the lists necessary to keep
track of the data accrued via the model. It sets the time_to_choose to 5 seconds
and sets level to three to determine the amount of individuals laid out onto the
board. It then calls InitGame(), which initializes the rest of the necessary compo-
nents for the game.

26 Chapter 3. Methodology

3.5. Scene Three: Gameplay 27

InitGame() then proceeds to dictate laying out the board, initializing the model,
and initializing the UI. It first checks to verify how many individuals will be used
in the scene, from 50 individuals to 200 mapping to levels 1 to 4. Depending on the
level, it will then call board_script.SetupScene(int individuals), which
will be discussed shortly. It sets up the initial values for score, power, paused,
and max_infected. It then records the initial data to the local lists by calling a
method add_data(), which simply adds the number of individuals in each sub-
population, the day, and the maximum number of infected to their correspond-
ing containers. It then points the UI to their components on the canvas and calls
updateText(), which simply sets the Text components to the current values ob-
tained via the sirGameModel.

28 Chapter 3. Methodology

The third vital method for this class is the Update() function. It begins by
ensuring the Scene index is correct. It checks to see if the pause menu is acti-
vated using the gameObject.activeInHierarchy11 variable and, if it is active,
uses the Time.timeScale12 variable to pause the game. This is done by setting
timeScale to zero. It then also checks if the escape key is pressed and, if so,
pauses or unpauses the game based on the value of the paused boolean variable.
Lastly, it checks to make sure that the variable Time.fixedTime is greater than
the time_to_choose variable and, if so, presents the vaccine menu, calculates the
score through a simple arithmetic method that takes into account power, and adds
the data to the lists in gameManager. Otherwise, it simply updates the UI text. This
all ensures that, as each frame is updates, the view is displaying the correct informa-
tion, as well as allowing the player to reach the pause menu.

11activeInHieracy is simply a boolean that serves as a flag for whether a particular gameObject
is currently active in the scene or not [24].

12Time.timeScale comes from Unity’s class Time and defines the scale at which time is passing
in the game [37].

3.5. Scene Three: Gameplay 29

The game score is calculated here and takes into account the "power" left, the
maximum number of infected, the recovered individuals, and the "days" that passed
over the course of the game. The idea behind the calculation was to emphasize
retaining "power" while also trying to limit the peak and length (in "days") of the
infection. The purpose of this is to reflect that, in real world infections, resources are
limited and a successful response would involve minimizing the number of infected
individuals and the number of days the infection spreads.

3.5.2 boardManager

boardManager is a component of the gameManager object and controls the layout
of the Sprite tiles that make up the game board. It does this by containing three
ints, which make up the columns, rows, and the count of individuals, as well as
arrays of GameObjects that contain the tiles, a Transform13 for the board, and
two lists, one with vectors and the other with GameObjects. The several methods
needed to actually set up the board are called from the method SetupScene(int
individual_count). This method is called from the gameManager and proceeds
to call all the necessary methods in boardManager to set up the board.

13A Transform is an object that determine the position, rotation, and scale of an object [38].

30 Chapter 3. Methodology

The SetupScene(int individual_count)method begins by calling initializeList(),
which initializes the list of all possible positions in which to place times. It loops
over the determined amount of columns and rows needed to lay the game board
out. While the values of columns and rows are set to 12 each, these had to be
adjusted to account for the X and Y placement of the grid in the Unity Editor. For
each iteration, it adds a location to the list grid_positions, utilizing the Vector3
object14 to add the locations.

It then calls boardSetup(), which first determines the position, rotation, and
scale for the board. In this case, it is the default, 2D plane setting. It then loops over
each row and column, instantiating the necessary tiles. If the location happens to
be on the edge of the grid, it instantiates a wall tile, which has a BoxCollider2D
component that makes it impenetrable to other objects. It will also remove these
edge locations so that nothing else can be placed there. Otherwise, if the location
is not on the edge of the board, it will place a floor tile, which has no extraneous
components attached.

14A Vector3 is a Unity library class that describes a 3D vector [39].

3.5. Scene Three: Gameplay 31

The method then lays out the inner walls to create the rooms by calling LayoutInnerWalls().
The instructions to do this are similar to how the wall tiles were instantiated previ-
ously in boardSetup(), but the locations are chosen with intent and are not neces-
sarily edges. Much like before, it removes these locations once the walls are instan-
tiated.

Lastly, it calls LayOutIndividualAtRandom(GameObject[] array) to lay-
out the different character tiles. This method utilizes the method RandomPosition()
to choose a Vector3 at random in which to place an individual. It does this for
each and every individual that the gameManager dictates the game will have. The
RandomPosition() method works by obtaining a randomly chosen index, using
the Random.Range(min, max)method. This Random class is one provided by the
Unity library. It then obtains the Vector3 that is at that specific index, removes it
and returns the Vector3 obtained. Once this is returned in LayoutIndividualAtRandom(GameObject[]
array), it is then used to instantiate the character and then adds said character to a
list of characters. Once the board’s setup is complete the sirGameModel script then
begins to initialize.

32 Chapter 3. Methodology

3.5.3 sirGameModel

Much like boardManager, the sirGameModel script is a component of the
gameManager. Unlike the previous, simple SIR script seen in Chapter 3, Section
3.1, this sirGameModel class was developed to work within Unity and take advan-
tage of the features it provides. As opposed to the constructor used in the simple
script, the method setupModel() is used15. This model serves as the backbone of
the game and dictates the spread of infection. It is primarily backed by a dictionary
that keeps track of each individual and their current status in the model. Using this,
the other scripts can then get these values directly from the model so that they may
update the view, through the use of a myriad of get and set methods, as the local
variables for the model are private to provide protection to them. The model setup
first initializes a dictionary, called population, that contains each individual on
the board and their current status. It then points the local variable board to the
boardManager. It then sets the initial values for each of the ints that represent the
number of individuals in each population, which will always be the total population
minus ten for susceptible, ten for infected, and 0 for recovered. It also sets the num-
ber of vaccines to two and the day to one. It then sets the value for the local variable
total_pop to the combination of the susceptible, infected, and recovered count. It
then gets the list of characters from board and loops over this list, setting the pre-
requisite portion to susceptible and infected (determined by the counts for both) and
adding them to the dictionary. Afterwards, the script sets the time to create a vaccine
to five seconds, which represents a single in-game "day." Each frame update then in
the FixedUpdate() method waits for five seconds to pass before updating the day

15This is because classes derived from MonoBehavior cannot have custom parameters in its con-
structor, as well as being unable to be invoked with the new keyword.

3.5. Scene Three: Gameplay 33

number.

The methods infect(GameObject character_one, GameObject character_two)
and recover(GameObject character)methods in the sirGameModel are where
most of the implementation differences lie between the simple script and the in-
game model. For one, in the game model, the actions of infection and recovery are
separated out into two different methods, as compared to the singular method in the
simple script. Additionally, the core functionality of when the infect method is called
is different than in the simple script. While recover(GameObject character)
is called every five seconds (or one in-game "day"), infect(GameObject character_one,
GameObject character_two) is only called upon the collision of two character
Sprites. The way this action is triggered will be discussed shortly, but for the mo-
ment, it is suffice to know that when two character Sprites collide on the game board,
the collision triggers this method to be called. It then takes the two character Sprites
that collided and proceeds through the method. It first checks to make sure if one
of the character Sprites is marked as "infected" in the sirGameModel’s dictionary.
If neither is marked as "infected," the method simply returns. Otherwise, it chooses
a random value in the range between zero and one thousand. That random value
determines the probability that a certain contact will result in an infectious contact.
Because we know that b represents a fixed number of infectious contacts, we can
presume that there is some chance that a contact will not be infectious. Using data
collected from the "Hong Kong Flu" epidemic as a real-life example, the estimate
is that there is an infectious contact every two days and, thus b is set to one-half
[41]. To recreate this, then, the random number is used to dictate the probability of
a contact being infectious. This way, not every single contact results in the spread of
an infection, evenifthereisan”infected”and”susceptible”contact. It then proceeds
to check which character is the "infected," and enter the if-statement according to

34 Chapter 3. Methodology

which character Sprite is the "infected" party. If random_chance is greater than
one thousand, the "susceptible" Sprite is then set as "infected" and the correspond-
ing counts for "infected" and "susceptible" increment and decrement.

The recover(GameObject character) method is then called every five sec-
onds or one in-game "day." Much like the previous method, the recover(GameObject
character) function first chooses an int between zero and one thousand to repre-
sent the chance that an individual recovers that day. If the random integer chosen is
less than 333, then the character’s status in the model is changed from "infected" to
"recovered" and the corresponding counts increment and decrement.

3.5. Scene Three: Gameplay 35

The method to vaccinate is simple in this model. This particular method is trig-
gered when the player clicks on a character Sprite with the left mouse-button. Once
the method is called, it simply checks to ensure that there is an available vaccine to be
used and, if so, sets the characters status to "recovered" in the model and increments
and decrements the appropriate counters.

These three methods make up the bulk of the functionality of the game. Without
these working in concert to accurately reflect the SIR model, there would be no real
representation of the model. While they are not the same mathematical equations
that the simple script emulated, these are meant to adhere to these equations through
behavior dependent on what actually occurs in the game world. Approaching the
model in this manner allows for the infection to spread as it would in the real world
(by individuals coming into contact with one another) without necessarily adhering
to the same rigidity that is seen when simply taking into account the mathematical
equations. This means that they will reflect more of the randomness that is involved
with real-life infection scenarios, while still following the SIR model.

3.5.4 movementController and character

The movementController class defines the behavior of how the individual
Sprite characters move on the game board. This class is inherited by the character
class and extended to define some of the methods left abstract in the movementController
class. The character script is the one actually attached to the individual Sprites
that are moving around the board. Upon the scene loading, each character loads this
script by calling the Start() method. The method here first points the character
script’s local sirGameModel variable to the script that is attached to the gameManager
script. It then gets the renderer variable to point to the SpriteRenderer that
is attached to the current character. It sets the time gap between each characters

36 Chapter 3. Methodology

movement at half a second and then sets the time to recover to five seconds. The
last portion simply calls the Start() method in the movementController. The
Start()method in movementController then points its local variable box_collider
to the BoxCollider2D component that is attached to the current character, as well
as pointing rigidbody_2d to the Rigidbody2D component. It also has a variable,
inverse_move_time, which inverses the time to move and is used to smooth out
movements.

To dictate where to move, the method moveCharacter() is called every half
second in-game. This method determines the direction to move in and then pro-
ceeds with the movement by calling other methods. It first randomly selects an X
and Y direction to go to, using a random number generator. Once that is chosen,
these X and Y values are then passed into character.attemptMove<T>(int x,
int y). This method simply calls the method of the same name from the parent
class, movementController. The attemptMove<T> (int x, int y) method
in the parent class sets a variable, hit, to be a RaycastHit2D object 16 It then
calls the movementController’s move(int x, int y, out RaycastHit2D
hit) method.

The first line is to cast the current Vector3 into a Vector2 (for 2D physics) for
the start point and then set a Vector2 for an end point. It disables the BoxCollider2D
component to allow for movement and assigns hit to a Physics2D.Linecast17

object, taking in the parameters of the start vector, the end vector, and the layer that

16A RaycastHit2D object is a class that contains information about an object collision detected by
a raycast in the 2D physics [31].

17This method returns a RaycastHit2D that is a line segment against two different colliders in the
Scene [30].

3.5. Scene Three: Gameplay 37

the character Sprite is on, which is determined in the Unity Editor. It then re-enables
the BoxCollider2D component, only to reset it. Then, it determines that if the
space dictated by hit is empty (indicated by the transform variable being null), a
coroutine18 starts to ensure the smooth movement of the character to the end point
and then returns true if so, false otherwise (which means the space is taken and there
is a collision).

Once the boolean is returned from movementController’s move method, the
controller’s attemptMovemethod can then verify whether the RaycastHit2D cre-
ated from it, hit, is null (indicating empty space) and, if so, allows the move to
occur. If not, it calls the onCantMove(Component component) method, which
is implemented in the character class. This method then gets the character that has
been hit and then calls the infect(character hit_character) method. This
method simply calls the sirGameModel’s infect method (discussed in Chapter 3,
Section 3.5.3). It then calls color_cue(), to change the color of the Sprite accord-
ing to the status. THe script checks if the current number of infected is greater than
the previous number of infected and, if so, plays the infection sound dictated by
the soundManager. The recover() method works in much the same way, calling
the sirGameModel’s recover(GameObject object) method, playing a recov-
ery sound if there are more recovered individuals at the end of the method than
there were at the beginning. Thus, both of these methods simply monitor when it is
necessary to update the model, and then notify the model to do so. The model then

18A coroutine is a function that can be suspended until given specific instructions [22].

38 Chapter 3. Methodology

proceeds to work through the necessary instructions and the updated information
is then sent back to the character class, which then edits the view that the player
sees, thus fulfilling the quasi-model-view-controller pattern that was set out to be
achieved.

To vaccinate, two methods are needed in the character class, OnMouseDown()
and vaccinate(). The former method is triggered upon a notification from the
EventSystem game object. When it detects a mouse click on a particular character,
this method is called in response. When this method is called, it first checks whether
there are enough vaccines available to use, as well as that the character you click on
is a viable candidate for vaccination (i.e. the character is "susceptible" in the model).
If so, it then calls the vaccinate() method in the character script and, once this
method is completed, calls the color_cue() method to change the color of the
character according to its status.

The vaccinate() method is then tasked with communicating with the model.
It starts by calling the vaccinate method in sirGameModel. The logic and instruc-
tions for the change in status is then handled by the model. Once this is completed,
character.vaccinate() then checks whether the current object has their status
as "recovered," implying that this status changed due to this method. If so, it plays a
simple chime to indicate that the status has changed.

3.5. Scene Three: Gameplay 39

Each character is updated each frame, with specific actions happening every
two seconds and five seconds. When the FixedUpdate() method is called, it first
calls color_cue() to make sure all the characters are of the correct color. It then
checks to see if there are any "infected" individuals left. If there are not, it plays a
game over sound and then loads the next scene. If not, then it continues to check if
enough time has passed to move the character. Every half-second, a character calls
moveCharacter(), initiating the movement sequence discussed above. It then
checks if the current object is "infected" and if five seconds have passed. If so, it
calls the recover() method in the character script. It does this until the end of the
game-play scene, where the actual game displays the final results.

40 Chapter 3. Methodology

3.6 Scene Four: The Results

The final Scene in the game is a graph that displays the trajectory of the spread
of infection amongst each of the subpopulations after playing through a full infec-
tion in the game. This Scene’s purpose is to demonstrate back to the player a more
traditional representation of what they just played, thereby linking it back to the
mathematical equations the game is modeling. By viewing this Scene immediately
after playing the game, the hope is that it is easier for a player to associate their ex-
periences with what they see on the screen. That way, playing the game can quickly
be linked to the more traditional ways the SIR model is taught. It simply displays
the change in population over time for each of the three populations ("susceptible,"
"infected," and "recovered") as a line graph of number of individuals over time. This
is presented, along with a final game score.

This scene consists of a Main Camera, EventSystem, and a Canvas. The
Canvas simply details the Text seen on screen, as well as a Button to end the game.
In this case, the Main Camera has a script attached to it, called graphController,
which utilizes a library obtained via the Asset Store to create the graph. The Button
is controlled by a script that is similar to the scripts used to control the menus in
previous Scenes. While the Unity Engine provides a LineRenderer class that ren-
ders lines, it is severely limited in terms of abilities. Thus, Vectrosity was used to
actually plot this graph. This library additionally also ensures that the lines do not
need to update with every frame if static, but remain unchanged, which is ideal for
this particular use.

3.6. Scene Four: The Results 41

The script for this is relatively simple. Upon loading the scene, the Start()
function is called and ensures that the Text local variables point to the Text com-
ponents that make up the UI. It then sets up the Text to display the titles and legend
of the graph. It then gets the data recorded via the gameManager script and points
local list containers to the data. It then loops through all the data, calculating the
coordinates for each time point, adjusting the values so that they are scaled for the
screen size. This is done by getting two list entries at a time from each list, creat-
ing the start point and end point of each Vector. Once these values are calculated,
Vectrosity’s VectorLine.SetLine method is utilized to plot every single vec-
tor that is calculated right above. This method simply plots the Vector between the
two given points, thus creating the line graph.

43

Chapter 4

Evaluation

The evaluation of this project is broken down into two separate evaluations. The
first section of the evaluation was done to evaluate the accuracy of the underlying
model that was constructed programmatically. This involved verifying the simple
C# script that was written as an exploratory venture, as well as verifying that the
implemented model in the game-play level retains that accuracy. This was done
prior to the completion of the prototype. Once the prototype was finished, the sec-
ond evaluation period commenced. This involved recruiting several participants to
complete a short pre-quiz to assess their knowledge and skill before there are any
changes, playing the game, and then completing a post-quiz. This was followed up
by a second experiment that was a variation on the first. The following will display
the results of each of these evaluation measures and discuss the results.

4.1 Evaluating the Model

The first step in evaluating this project was to validate that the simple model written
in C#, as well as the more complex in-game model, are accurately portraying the be-
havior of the SIR model. Accuracy involved comparing these models to the details
in the original paper proposed by Kermack and McKendrick [9], as well as to previ-
ously implemented SIR models. This exploratory evaluation was vital to the project
overall because a fundamental flaw in the understanding of the model would lead
to a flawed representation of the model in the game. This would undermine any
effort in investigating if playing a game is an effective way of helping individuals
learn this model. Thus, this is an important early step in the evaluation of the game
as a whole.

4.1.1 Evaluating the Simple C# Script

The simple C# model was the first model to be evaluated, as it was done in part
to explore methods of implementing the SIR model using C#. This experiment was
run within Terminal on Apple’s OSX, with the script printing out a CSV file for the
population data captured at each time-point for each subpopulation. Those CSV
files were labeled, saved, and then used to produce three CSV files that contained an
average over five trial runs. Each time a trial was run, the CSV files produced were
reviewed to ensure that at each time point, the three subpopulations added up to
equal the total population. This process was repeated for differing total populations:

• 100 individuals

• 1000 individuals

• 10.000 individuals

44 Chapter 4. Evaluation

• 100.000 individuals

After running five trials for each total, the results were then averaged out to create
an average for each subpopulation at each time-point. This, then, was the data used
to create the graphs that are below.

FIGURE 4.1: "Total population of 100 over time in days"

FIGURE 4.2: "Total population of 1000 over time in days"

FIGURE 4.3: "Total population of 10.000 over time in days"

These all demonstrate similar behavior. The peak of the infection (i.e. the high-
est amount of infected individuals) occurs relatively early on in all four scenarios.
This is to be expected, as in the initial phases of an infection there are many more
individuals that are viable candidates to be infected. This spreads the disease more
quickly and effectively than in the latter stages of an epidemic. Each of these graphs
demonstrate that the epidemic increases until the density of the susceptible popu-
lation reaches a certain threshold; once that threshold is reached by the susceptible
population, the epidemic starts to slow down, as seen by the steady decrease of in-
fected individuals from the peak of infection. Kermack and McKendrick observed

4.1. Evaluating the Model 45

FIGURE 4.4: "Total population of 100.000 over time in days"

that an epidemic would continue spreading until a certain threshold is met, where-
upon it begins to subside[9]. The behavior observed in these graphs align themselves
with this observation.

Notice as well that, as the populations grew larger, the infection spread more
effectively and quickly. This reflects part of the model, that changes in population
density can vary the size of the epidemic; Kermack and McKendrick point out that
the size of an epidemic increases rapidly as density increases [9]. Thus, it makes
sense that, in the implemented model, the epidemic speed and severity increases as
the amount of individuals increase. In the first graph, where the density is low, the
infection is slow and does not spread as quickly, while the third and fourth graphs
demonstrate a rapid rise in the infected population early in the infection, adhering
to this principle.

4.1.2 Evaluating the In-Game Model

Using the simple script as a base, the in-game model was implemented to utilize
more of the capabilities of Unity. The model was implemented as discussed above
in Chapter 3. Much like for the simple C# script, this model was evaluated by run-
ning five different trials and then producing an averaged results table. This table
was then used to create a graph representation of the course of the infection. This
particular model was tested with 100 individuals, the medium setting for the game.
Whereas the simple C# script could be tested with varying sizes of populations, the
in-game model was limited in terms of size, so the medium population size sup-
ported was used to investigate the model’s accuracy (as the model can hold up to
200 individuals on its game board while still allowing for character movement).

This model follows the principles set for by Kermack and McKendrick. The epi-
demic spreads and peaks at certain point. That certain point, then, is the high point
for the infection, as well as the threshold for the susceptible population. Past this
threshold, the epidemic starts to slowly stop, until the epidemic is completely over.
While these results are similar to those above, the results differ greatly from the re-
sults obtained in the simple C# scripts 100 individuals scenario. However, this is
due to the fundamental differences in the way these models are implemented. The
C# script, taking place in an abstract manner, does not have the same physical space
constraints the in-game model does for individuals, which may be why the infection
does not spread rapidly in this scenario. The population density for the in-game
model plays a much more important role in the spread of infection, simply because
there is only a limited amount of space for the individual Sprites to move. Thus, the
density dictates the spread of the epidemic for the in-game model more than it does
in the simple C# script.

46 Chapter 4. Evaluation

FIGURE 4.5: "In-Game Model with population of 100 over time in
seconds"

4.1.3 Comparison to Previous Implementations

The final step in evaluating the accuracy of this model was to compare it to several
different implementations of the model, completed by other groups. In doing this,
an outside model, created in a different language and manner, could verify the accu-
racy of model completed for this particular work. These models were obtained from
work previously done at the University of Warwick in the United Kingdom, as well
as Duke University in the United States.

The model implemented by the University of Warwick followed the assumptions
of a simple SIR model, presuming that the total population stays fixed. Addition-
ally, their rates are determined in days and presume homogeneous mixing[8]. Their
model was implemented in Python, as opposed to the C# language used for this
project. The resulting data after running their model is seen below.

FIGURE 4.6: "Results from the University of Warwick Model[8]"

4.2. User Evaluation and Assessments 47

The resulting figure is similar to the simple C# script and very closely follows
the in-game model. There is peak of infection that matches where the susceptible
and the recovered graphs intersect; this is the threshold mentioned by Kermack and
McKendrick[9]. It also demonstrates that, much as the models implemented for
this project show, the peak of infection tends to happen early in the infection. This
Python model demonstrates that, for this project, the models implemented are accu-
rate in their functioning. The behavior seen in the independently developed Python
model is similar to the behavior in both models, thus verifying that the models used
in this project are accurate depictions of the SIR model.

A second model used to verify the SIR model was independently developed by
researchers at Duke University. This particular model was developed in MATLAB.
They used the data from the "Hong Kong Flu" Epidemic as the basis of their model.
Their results are displayed below.

FIGURE 4.7: "Results from the Duke University Model[41]"

In this implemented model, the peak of the infection is much later than the previ-
ously seen models. Because this is based on real world data, however, the behavior
may be slightly different than models created in a more sterile and controlled envi-
ronment. Despite this, however, the same pattern of behavior in terms of the growth
of the epidemic remains. The epidemic peaks close to when the susceptible and re-
covered populations intersect. Thus, when the epidemic reaches a certain threshold,
the spread of disease starts to slow down and will eventually stop.

In comparing the two models created for this project with two different mod-
els created independently, the purpose was to ensure that the understanding of this
model was sufficient for the needs of this project. This was a vital part of this project.
The model’s accuracy is vital in using this as an educational tool; verifying this accu-
racy was an important step in understanding whether the presented work simulated
the SIR model. Following the comparison of two models, it is clear that both imple-
mented models accurately depict the SIR model.

4.2 User Evaluation and Assessments

The next phase of evaluation involved evaluating the game’s effects on players. This
was broken into two different experiments. In the first, users were tasked with com-
pleting a short quiz that contained several questions regarding the SIR model, as
well as questions asking their previous experience with video games, the SIR model,

48 Chapter 4. Evaluation

and differential equations. They would then play the prototype to its completion,
and immediately complete a post-quiz afterwards, which was similar to the pre-
quiz but contains five new questions. They would then also input any comments
or bugs they encountered while playing the prototype. The second experiment was
similar but added one single step to the process. This step involved reading a short
description of the SIR model, followed by spending a two-minute word search. The
participant would then proceed with the rest of the experiment identically to the first
group. This way, there could be some insight into whether the learning gains are im-
proved when the game is presented in conjunction with more traditional literature
on the SIR model.

4.2.1 Experiment One Results

These participants were tasked with taking a short, ten question quiz with questions
pertaining to the SIR model. They would also be asked to rate the experience with
video games, the SIR model, and differential equations on a a scale of 1 to 5, with 1
being none at all and 5 being extensive. Afterwards, they played the prototype to its
completion. Upon finishing the prototype, they were then tasked with completing
another quiz. This post-quiz contained five questions that were in the previous quiz,
with their answers shifted in position, and five new questions. They were then asked
to present any comments about the game that they played. Presented here are the
results of the first experiment.

FIGURE 4.8: "Quiz Results from Experiment One"

Evidently, the participants did not all see an increase in performance. Partici-
pants 01 and 04 both saw an increase in performance from the pre-quiz to the post-
quiz. However, participants 02, 03, 05, and 06 all saw a reduction in performance be-
tween the pre-quiz and the post-quiz. So, while it may seem that some participants
benefited from playing the game, some did not necessarily see their performance
increase after playing the game. This finding was unexpected, as one would expect
that playing the game would help players better understand the SIR model. How-
ever, this could be caused by the previous experience the participants had going into
the experiment. Because every participant rated their experience with the SIR model
as little to none, it may be that their performances on both quizzes are affected by
this. Those with high pre-quiz score and low post-quiz score (such as Participant 03)
may have been more of a product of guessing rather than foreknowledge, leading

4.2. User Evaluation and Assessments 49

FIGURE 4.9: "Experience Ratings according to Users"

one to conclude that the high score on their pre-quiz is rather misleading. This is also
a victim of sample size; with a larger group of testers, it would have been possible
to recruit more participants with experience in the SIR model.

It would seem that playing the game on its own, without any short discussion
of the SIR model in a traditional manner, does necessarily impart any learning ben-
efits. However, as mentioned before, the cohort recruited did not have experience
with the SIR model, so one cannot say that this is a representative sampling. It may
be beneficial to examine how participants do in this same scenario, but with more
knowledge of the SIR model going into the experiment. Thus, the next experiment
was undertaken to examine this very thing.

4.2.2 Experiment Two Results

FIGURE 4.10: "Quiz Results from Experiment Two"

This experiment was an extension of the previous experiment. Much like before,
participants completed a short pre-quiz, played the prototype, and then completed
a post-quiz. However, as opposed to the previous experiment, participants in this
experiment began by reading a short, traditional explanation of the SIR, provided
by lecturers at Duke University [41]. This was done to provide some context to the
participants, as many of the participants had little to no previous experience with
the model. The participants would then play a word search for two minutes. That
way, the participant would not necessarily have what they read about the SIR model
fresh in their memory; it acts as a sort of mental palate cleanser. They would then

50 Chapter 4. Evaluation

FIGURE 4.11: "Experiment Two Experience Ratings"

complete the experiment as set up in the first experiment. They would complete the
pre-quiz and rate their experience with video games, the SIR model, and differential
equations. They would then play the game, and complete a post-quiz. This way, the
game would be played in conjunction with a more traditional instruction method of
this model.

While one might have expected the added portion of instruction beneficial to
the learning of the participants, the results of this experiment are not conclusive in
any manner. Though Participant 07 managed to improve, Participant 08 diminished
in performance. However, as compared to the previous experiment, the average of
both participants pre- and post-quiz scores demonstrate a smaller reduction in per-
formance. Once again, though, the size of the cohort limits the ability to make any
conclusive declarations about the data. This second experiment, however, would be
worth further investigation in a wider reacher experiment.

51

Chapter 5

Conclusion

Presented in the preceding chapters is a game with the intention of teaching players
the SIR model of infection. Through this work, an application was created in which
players can play their way through an infection, trying to do their best to contain
the outbreak while retaining resources. Utilizing the libraries available within the
Unity development environment and engine, the game simulates the spread of an
epidemic while adhering to the SIR model of epidemics. This allows players to in-
teract with a simulated epidemic and learn how simple steps like quarantine and
vaccination can affect it.

Several scripts were written to create the simulated epidemic behavior. Some
control the behavior of the application overall, while some control what was occur-
ring on the screen. The vital scripts of gameManager, boardManager, and sirGameM-
odel control the behavior of the game overall. gameManager keeps track of relevant
data such as "power," "score," and "day," as well as calling both the boardManager
and sirGameModel to initialize the game overall. boardManager defines the class
that dictates the way the board is laid out. sirGameModel defines the behavior of
SIR model in the game. The scripts character and movementController, as well as
menuScript, dictate much of the view, by controlling the character Sprites and the
UI.

Through the evaluation of the created model, it is evident that the application
correctly simulated the SIR model of epidemics. As seen in Chapter 4, an exploratory
script directly implemented the model in only C# and resembled the expected be-
havior of the SIR model. The ideas utilized for this exploratory work then created
the basis for which the model was extended for use in the application. Once the
sirGameModel script was implemented, this was then evaluated for accuracy as
well. This model also demonstrated the expected behavior of an epidemic accord-
ing to the SIR model. Knowing the game correctly simulated the SIR model, the
prototype of the game was then completed and then the user evaluation phase com-
menced. Two experiments were set up for participants. In first experiment, they
simply completed a pre-quiz, rate their previous experience with the model and
video games, play the prototype, and then take a post-quiz. In the second experi-
ment, participants read a short description of the SIR model, played a word game,
and then proceeded through the same steps that the participants in the first experi-
ment did. These two modest evaluations cannot conclusively demonstrate that the
game improved the learning outcomes of the evaluators. While some participants
in both experiments did see an increase in performance between the pre-quiz and
the post-quiz, some saw their performance diminish. The limitation of the small
sample size hindered the creation of consensus as to whether this game successfully
improves the learning outcomes for students learning the SIR model.

52 Chapter 5. Conclusion

Despite this, however, enough individuals that do show some improvement. Ex-
panding the evaluation cohort would prove beneficial and allow for a greater under-
standing as to the learning effects of this work. Because the game’s lessons on the
SIR model are not explicitly mentioned but rather gathered as a result of playing the
game, the game may work most effectively in conjunction with formal lessons on
the model. Expanding the second study would provide the most beneficial insight
into the ways this game effects learning outcomes.

53

Appendix A

Quizzes

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 1/7

PreSurvey
Please answer these questions prior to playing the single level prototype

* Required

54 Appendix A. Quizzes

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 2/7

1. What curve best represents the infected population over time in an epidemic? *
Mark only one oval.

 Option 1 Option 2

 Option 3

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 3/7

2. What curve best represents the susceptible population over time in an epidemic? *
Mark only one oval.

 Option 1 Option 2

 Option 3

Appendix A. Quizzes 55

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 4/7

3. What curve best represents the recovered population over time in an epidemic? *
Mark only one oval.

 Option 1 Option 2

 Option 3

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 5/7

4. How does the SIR model assume that susceptible and infected individuals eventually shift to the
recovered population?
Mark only one oval.

 Death

 Natural Recovery

 Vaccination

 Quarantine

 All of the Above

5. True or False: On average, some fraction of the infected population will shift over to the
recovered population each day. *
Mark only one oval.

 True

 False

6. True or False: An epidemic (in the SIR model) generally ends before the population of
susceptible individuals is exhausted. *
Mark only one oval.

 True

 False

7. True or False: At each stage of an epidemic, adding the number of susceptible, infected, and
recovered individuals will always equal to the total population. *
Mark only one oval.

 True

 False

56 Appendix A. Quizzes

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 6/7

8. How would you expect the number of susceptible individuals to change over time during an

epidemic using the SIR model?

Mark only one oval.

 Increase

 Decrease

 Stay Fixed

 Increase then decrease

 Decrease then increase

9. What assumption does the SIR model make in regards to population size? *

Mark only one oval.

 It increases over time.

 It decreases over time.

 It stays fixed.

10. What is the amount of recovered individuals dependent on? *

Mark only one oval.

 Amount of susceptible individuals

 Amount of infected individuals

11. How much experience would you say you've had playing video games? *

Mark only one oval.

1 2 3 4 5

None at all Extensive

12. How much experience would you say you've had with the SIR epidemic model? *

Mark only one oval.

1 2 3 4 5

None at all Extensive

8/15/2017 Pre-Survey

https://docs.google.com/forms/d/13TPlIPVNcZe447zqSSJw5OXNbhSX8RoTKhFLRuOy0bw/edit 7/7

Powered by

13. How much experience would you've had with differential equations? *

Mark only one oval.

1 2 3 4 5

None at all Extensive

A.1. Post-Quiz 57

A.1 Post-Quiz
8/15/2017 Post-Survey

https://docs.google.com/forms/d/1IspKyW3oibXKqmMxg9oHuIOizyTmmZKM3aiQZggN-Dc/edit 1/5

PostSurvey
Please complete this after you have played the single level prototype.

* Required

1. How would you expect the number of susceptible individuals to change over time during an

epidemic using the SIR model? *

Mark only one oval.

 Decrease

 Stay Fixed

 Increase then decrease

 Increase

 Decrease then increase

2. For the SIR model, what type of mixing is assumed? *

Mark only one oval.

 Homogenous

 Heterogenous

3. True or False: At each stage of an epidemic, adding the number of susceptible, infected, and

recovered individuals will always equal to the total population. *

Mark only one oval.

 True

 False

8/15/2017 Post-Survey

https://docs.google.com/forms/d/1IspKyW3oibXKqmMxg9oHuIOizyTmmZKM3aiQZggN-Dc/edit 2/5

4. How is the relative contagiousness of the disease measured in the SIR model? *
Mark only one oval.

 Rate of change between susceptible to infected

 Rate of change between infected and recovered

 The number of close contacts per infected individual

5. What is herd immunity? *
Mark only one oval.

 When there are no infected individuals left to spread the disease

 When enough individuals are recovered to reduce the spread of disease

 When there are no longer enough susceptibles in the population to spread the disease

6. True or False: On average, some fraction of the infected population will shift over to the
recovered population each day. *
Mark only one oval.

 True

 False

7. What is the size of the infected population like at the peak of an epidemic? *
Mark only one oval.

 Relatively high compared to total population

 Relatively low compared to total population

 Relatively average compared to total population

8. How does the SIR model assume that susceptible and infected individuals eventually shift to the
recovered population? *
Mark only one oval.

 Vaccination

 Death

 Natural Recovery

 Quarantine

 All of the Above

58 Appendix A. Quizzes

8/15/2017 Post-Survey

https://docs.google.com/forms/d/1IspKyW3oibXKqmMxg9oHuIOizyTmmZKM3aiQZggN-Dc/edit 3/5

9. What curve best represents the susceptible population over time in an epidemic? *
Mark only one oval.

 Option 1 Option 2

 Option 3

10. What is the amount of recovered individuals dependent on? *
Mark only one oval.

 Amount of susceptible individuals

 Amount of infected individuals

8/15/2017 Post-Survey

https://docs.google.com/forms/d/1IspKyW3oibXKqmMxg9oHuIOizyTmmZKM3aiQZggN-Dc/edit 4/5

11. How would you rate your understanding of epidemics after playing this game, in terms of what

you understood before? *

Mark only one oval.

1 2 3 4 5

Very little A lot

12. Did you feel like the game conveyed some information in regards to the spread of diseases? *

13. Were there any game mechanics that you didn't understand or were poorly explained? *

14. Do you feel that there are improvements that could be made to the game?

A.1. Post-Quiz 59

8/15/2017 Post-Survey

https://docs.google.com/forms/d/1IspKyW3oibXKqmMxg9oHuIOizyTmmZKM3aiQZggN-Dc/edit 5/5

Powered by

15. Were there any bugs you encountered? If so, do you recall what happened?

61

Bibliography

[1] Google Arts and The British Museum Culture. The Royal Game of Ur. 2016. URL:
https://www.google.com/culturalinstitute/beta/asset/the-
royal-game-of-ur/MwE2MMZNSKiTwQ (visited on 07/17/2017).

[2] Thomas M. Connolly et al. “A systematic literature review of empirical evi-
dence on computer games and serious games”. In: Computers and Education 59
(2012), pp. 661–686.

[3] Microsoft Corporation. Dictionary <TKey, TValue> Class. URL: https://msdn.
microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx (visited
on 07/19/2017).

[4] Rosemary Garris, Robert Ahlers, and James E. Driskell. “Games, motivation,
and learning: A research and practice model”. In: 2002.

[5] Mike Geig. In: SamsTeachYourself Unity Game Development. 2013.

[6] Thomas Hainey, Thomas Connolly, and Elizabeth Boyle. “A Survey of Stu-
dents’ Motivations for Playing Computer Games: a Comparative Analysis of
Three Studies in Higher Education”. In: Proceedings of the 3rd European Confer-
ence on Game Based Learning. Ed. by Maja Pivec. Academic Conferences and
Publishing Limited (ACPIL), 2009, pp. 154–163.

[7] Margaret A. Honey. “Learning Science Through Computer Games and Simu-
lations”. In:

[8] Matt J. Keeling and Pejman Rohani. “Simple SIR Model”. In: Modeling Infec-
tious Disease in Humans and Animals. 2007, pp. 19–27.

[9] W. O. Kermack and A. G. McKendrick. “A Contribution to the Mathemati-
cal Theory of Epidemics”. In: Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character 115.772 (1927),
pp. 700–721. ISSN: 09501207. URL: http://www.jstor.org/stable/
94815.

[10] Scott W. McQuiggan et al. “Story-Based Learning: The Impact of Narrative on
Learning Experiences and Outcomes”. In: Intelligent Tutoring Systems. 2008.

[11] Penn Museum. The Indian Games of Pachisi, Chaupar, and Chausar. 2016. URL:
https://www.penn.museum/sites/expedition/the- indian-
games-of-pachisi-chaupar-and-chausar/ (visited on 07/17/2017).

[12] Enrica Pesare et al. “Game-based learning and Gamification to promote en-
gagement and motivation in medical learning contexts”. In: Smart Learning
Environments. 2016.

[13] Jonathan P. Rowe et al. “Integrating Learning, Problem Solving, and Engage-
ment in Narrative-Centered Learning Environments”. In: I. J. Artificial Intelli-
gence in Education 21 (2011), pp. 115–133.

https://www.google.com/culturalinstitute/beta/asset/the-royal-game-of-ur/MwE2MMZNSKiTwQ
https://www.google.com/culturalinstitute/beta/asset/the-royal-game-of-ur/MwE2MMZNSKiTwQ
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
http://www.jstor.org/stable/94815
http://www.jstor.org/stable/94815
https://www.penn.museum/sites/expedition/the-indian-games-of-pachisi-chaupar-and-chausar/
https://www.penn.museum/sites/expedition/the-indian-games-of-pachisi-chaupar-and-chausar/

62 BIBLIOGRAPHY

[14] Tim Ryan. The Anatomy of a Design Document, Part 1: Documentation Guidelines
for the Game Concept and Proposal. 1999. URL: http://www.gamasutra.
com/view/feature/131791/the_anatomy_of_a_design_document_
.php?page=1 (visited on 07/19/2017).

[15] Unity Technologies. AudioClip. 2017. URL: https://docs.unity3d.com/
ScriptReference/AudioClip.html (visited on 07/17/2017).

[16] Unity Technologies. AudioSource. 2017. URL: https : / / docs . unity3d .
com/ScriptReference/AudioSource.html (visited on 07/21/2017).

[17] Unity Technologies. BoxCollider2D. 2017. URL: https://docs.unity3d.
com/ScriptReference/BoxCollider2D.html (visited on 07/17/2017).

[18] Unity Technologies. Button. 2017. URL: https://docs.unity3d.com/
ScriptReference/UI.Button.html (visited on 07/17/2017).

[19] Unity Technologies. Camera. 2017. URL: https://docs.unity3d.com/
ScriptReference/Camera.html (visited on 07/21/2017).

[20] Unity Technologies. Canvas. 2017. URL: https://docs.unity3d.com/
ScriptReference/Canvas.html (visited on 07/17/2017).

[21] Unity Technologies. Company Facts. 2017. URL: https://unity3d.com/
public-relations (visited on 07/16/2017).

[22] Unity Technologies. Coroutine. 2017. URL: https://docs.unity3d.com/
ScriptReference/Coroutine.html (visited on 07/21/2017).

[23] Unity Technologies. EventSystem. 2017. URL: https://docs.unity3d.
com/Manual/EventSystem.html (visited on 07/21/2017).

[24] Unity Technologies. gameObject.activeInHierarchy. 2017. URL: https://docs.
unity3d.com/ScriptReference/GameObject-activeInHierarchy.
html (visited on 07/21/2017).

[25] Unity Technologies. GameObject.GetComponent. 2017. URL: https://docs.
unity3d.com/ScriptReference/GameObject.GetComponent.html
(visited on 07/21/2017).

[26] Unity Technologies. GameObject.SetActive. 2017. URL: https://docs.unity3d.
com/ScriptReference/GameObject.SetActive.html (visited on 07/21/2017).

[27] Unity Technologies. Learning the Interface. 2017. URL: https://docs.unity3d.
com/Manual/LearningtheInterface.html (visited on 07/16/2017).

[28] Unity Technologies. MonoBehavior.Awake. 2017. URL: https://docs.unity3d.
com/ScriptReference/MonoBehaviour.Awake.html (visited on 07/21/2017).

[29] Unity Technologies. Object.DontDestroyOnLoad. 2017. URL: https://docs.
unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
(visited on 07/21/2017).

[30] Unity Technologies. Physics2D.Lincast. 2017. URL: https://docs.unity3d.
com/ScriptReference/Physics2D.Linecast.html (visited on 07/21/2017).

[31] Unity Technologies. RaycastHit2d. 2017. URL: https://docs.unity3d.
com/ScriptReference/RaycastHit2D.html (visited on 07/21/2017).

[32] Unity Technologies. Rigidbody2D. 2017. URL: https://docs.unity3d.
com/ScriptReference/Rigidbody2D.html (visited on 07/17/2017).

[33] Unity Technologies. SceneManager. 2017. URL: https://docs.unity3d.
com/ScriptReference/SceneManagement.SceneManager.html (vis-
ited on 07/21/2017).

http://www.gamasutra.com/view/feature/131791/the_anatomy_of_a_design_document_.php?page=1
http://www.gamasutra.com/view/feature/131791/the_anatomy_of_a_design_document_.php?page=1
http://www.gamasutra.com/view/feature/131791/the_anatomy_of_a_design_document_.php?page=1
https://docs.unity3d.com/ScriptReference/AudioClip.html
https://docs.unity3d.com/ScriptReference/AudioClip.html
https://docs.unity3d.com/ScriptReference/AudioSource.html
https://docs.unity3d.com/ScriptReference/AudioSource.html
https://docs.unity3d.com/ScriptReference/BoxCollider2D.html
https://docs.unity3d.com/ScriptReference/BoxCollider2D.html
https://docs.unity3d.com/ScriptReference/UI.Button.html
https://docs.unity3d.com/ScriptReference/UI.Button.html
https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/ScriptReference/Canvas.html
https://docs.unity3d.com/ScriptReference/Canvas.html
https://unity3d.com/public-relations
https://unity3d.com/public-relations
https://docs.unity3d.com/ScriptReference/Coroutine.html
https://docs.unity3d.com/ScriptReference/Coroutine.html
https://docs.unity3d.com/Manual/EventSystem.html
https://docs.unity3d.com/Manual/EventSystem.html
https://docs.unity3d.com/ScriptReference/GameObject-activeInHierarchy.html
https://docs.unity3d.com/ScriptReference/GameObject-activeInHierarchy.html
https://docs.unity3d.com/ScriptReference/GameObject-activeInHierarchy.html
https://docs.unity3d.com/ScriptReference/GameObject.GetComponent.html
https://docs.unity3d.com/ScriptReference/GameObject.GetComponent.html
https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html
https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html
https://docs.unity3d.com/Manual/LearningtheInterface.html
https://docs.unity3d.com/Manual/LearningtheInterface.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
https://docs.unity3d.com/ScriptReference/Physics2D.Linecast.html
https://docs.unity3d.com/ScriptReference/Physics2D.Linecast.html
https://docs.unity3d.com/ScriptReference/RaycastHit2D.html
https://docs.unity3d.com/ScriptReference/RaycastHit2D.html
https://docs.unity3d.com/ScriptReference/Rigidbody2D.html
https://docs.unity3d.com/ScriptReference/Rigidbody2D.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html

BIBLIOGRAPHY 63

[34] Unity Technologies. Sprite. 2017. URL: https : / / docs . unity3d . com /
ScriptReference/Sprite.html (visited on 07/17/2017).

[35] Unity Technologies. Sprite Renderer. 2017. URL: https://docs.unity3d.
com/ScriptReference/SpriteRenderer.html (visited on 07/17/2017).

[36] Unity Technologies. Text. 2017. URL: https://docs.unity3d.com/ScriptReference/
UI.Text.html (visited on 07/17/2017).

[37] Unity Technologies. Time.timeScale. 2017. URL: https://docs.unity3d.
com/ScriptReference/Time-timeScale.html (visited on 07/21/2017).

[38] Unity Technologies. Transform. 2017. URL: https://docs.unity3d.com/
ScriptReference/Transform.html (visited on 07/21/2017).

[39] Unity Technologies. Vector3. 2017. URL: https://docs.unity3d.com/
ScriptReference/Vector3.html (visited on 07/21/2017).

[40] Unity Technologies. Welcome to the Unity Scripting Interface. 2017. URL: https:
//docs.unity3d.com/ScriptReference/index.html (visited on
07/17/2017).

[41] The SIR Model for the Spread of Disease. https://services.math.duke.
edu/education/ccp/materials/diffcalc/sir/sir1.html. Ac-
cessed: 2017-04-06.

[42] Terrence M. Tumpey et al. “Characterization of the Reconstructed 1918 Span-
ish Influenza Pandemic Virus”. In: Science 310.5745 (2005), pp. 77–80. ISSN:
0036-8075. DOI: 10.1126/science.1119392. eprint: http://science.
sciencemag.org/content/310/5745/77.full.pdf. URL: http:
//science.sciencemag.org/content/310/5745/77.

[43] Jarrett Walker. Learning from Mini Metro. 2016. URL: http://humantransit.
org/2014/12/learning-how-transit-works-from-mini-metro.
html (visited on 07/17/2017).

[44] Sam White. Minecraft in Space: why NASA is embracing Kerbel Space Program.
2014. URL: https : / / www . theguardian . com / technology / 2014 /
may/22/kerbal-space-program-why-nasa-minecraft (visited on
07/17/2017).

[45] Pieter Wouters, Erik D. van der Spek, and Herre van Oostendorp. “Towards
the Development of a Games-Based Learning Evaluation Framework”. In: Cur-
rent Practices in Serious Game Research: A Review from a Learning Outcomes Per-
spective. Ed. by Thomas Connolly, Mark Stansfield, and Thomas Hainey. 2009,
pp. 232–250.

https://docs.unity3d.com/ScriptReference/Sprite.html
https://docs.unity3d.com/ScriptReference/Sprite.html
https://docs.unity3d.com/ScriptReference/SpriteRenderer.html
https://docs.unity3d.com/ScriptReference/SpriteRenderer.html
https://docs.unity3d.com/ScriptReference/UI.Text.html
https://docs.unity3d.com/ScriptReference/UI.Text.html
https://docs.unity3d.com/ScriptReference/Time-timeScale.html
https://docs.unity3d.com/ScriptReference/Time-timeScale.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/index.html
https://docs.unity3d.com/ScriptReference/index.html
https://services.math.duke.edu/education/ccp/materials/diffcalc/sir/sir1.html
https://services.math.duke.edu/education/ccp/materials/diffcalc/sir/sir1.html
http://dx.doi.org/10.1126/science.1119392
http://science.sciencemag.org/content/310/5745/77.full.pdf
http://science.sciencemag.org/content/310/5745/77.full.pdf
http://science.sciencemag.org/content/310/5745/77
http://science.sciencemag.org/content/310/5745/77
http://humantransit.org/2014/12/learning-how-transit-works-from-mini-metro.html
http://humantransit.org/2014/12/learning-how-transit-works-from-mini-metro.html
http://humantransit.org/2014/12/learning-how-transit-works-from-mini-metro.html
https://www.theguardian.com/technology/2014/may/22/kerbal-space-program-why-nasa-minecraft
https://www.theguardian.com/technology/2014/may/22/kerbal-space-program-why-nasa-minecraft

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Games For Learning
	Learning Games in School
	Learning Games in Other Contexts

	The SIR Model
	Unity Integrated Development Environment
	Unity Editor
	Unity Engine

	Methodology
	Simple SIR Model in C#
	SIR Model Constructor
	Infection and Recovery

	Planning and Design of the Game
	Game Design Document

	Scene One: The Main Menu
	menuScript
	soundController

	Scene Two: The Instruction Scene
	textboxManager

	Scene Three: Gameplay
	gameManager
	boardManager
	sirGameModel
	movementController and character

	Scene Four: The Results

	Evaluation
	Evaluating the Model
	Evaluating the Simple C# Script
	Evaluating the In-Game Model
	Comparison to Previous Implementations

	User Evaluation and Assessments
	Experiment One Results
	Experiment Two Results

	Conclusion
	Quizzes
	Post-Quiz

	Bibliography

